Given an **NxN chessboard and a Knight at position (x,y)**. The Knight has to take exactly K steps, where at each step it chooses any of the 8 directions uniformly at random. What is the probability that the Knight remains in the chessboard after taking K steps, with

the condition that it can’t enter the board again once it leaves it.

**Constraints:**

1<= T <=100

0<= N, K, X, Y <=100

**Example:**

Input:

1

8 0 0 3

Output:

0.125000

#include<bits/stdc++.h> using namespace std; double dp[100][100][100]; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); int t; cin>>t; while(t--) { int n,x,y,k; cin>>n>>x>>y>>k; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) dp[i][j][0]=1; } for(int s=1;s<=k;s++) { for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { double p=0.00; if(i-2>=0 && j-1>=0) p=p+dp[i-2][j-1][s-1]/8.00; if(i-1>=0 && j-2>=0) p=p+dp[i-1][j-2][s-1]/8.00; if(i+2<n && j-1>=0) p=p+dp[i+2][j-1][s-1]/8.00; if(i+1<n && j-2>=0) p=p+dp[i+1][j-2][s-1]/8.00; if(i+2<n && j+1<n) p=p+dp[i+2][j+1][s-1]/8.00; if(i-2>=0 && j+1<n) p=p+dp[i-2][j+1][s-1]/8.00; if(i-1>=0 && j+2<n) p=p+dp[i-1][j+2][s-1]/8.00; if(i+1<n && j+2<n) p=p+dp[i+1][j+2][s-1]/8.00; dp[i][j][s]=p; } } } cout<<fixed<<setprecision(6)<<dp[x][y][k]<<endl; } return 0; }

I you found that your code is not running or working properly Please comment.

## tourist attractions

28 Jun 2018Hi everyone, it’s my first pay a visit at this website,

and paragraph is really fruitful designed for me, keep up posting these types of articles.